
© 2011 IBM Corporation

BP203 Leverage the New Java 
APIs in IBM Lotus Notes®

8.5.1 and 8.5.2!
Karsten Lehmann | CEO | Mindoo GmbH
Tammo Riedinger | CEO | Mindoo GmbH



2

Agenda

● Introduction

● Extending Lotus Notes in Java

● Extending Domino Designer in Java

● Added value for classic Lotus Notes and XPages development

● Best practices

● Q&A



3

About us

● Mindoo is IBM Business Partner and Notes/Domino Design Partner

● Focused on the „new“ IBM Lotus Notes development areas
─ Eclipse/Expeditor plugins and rich client applications
─ XPages applications and controls
─ Composite Application architectures
─ LiveText extensions

● Karsten Lehmann and Tammo Riedinger
─ Founders of Mindoo
─ Since 2004 developers of the MindPlan® application,

Mindmapping and Project Management for Lotus Notes, IBM Award Winner 2008

● More company information:
http://www.mindoo.com 
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Motivation

● „Notes can do that too“ - yes, but why must it be so complicated?
─ Until now, Eclipse and XPages developers had to use far too many workarounds to 

interact with the classic Notes UI
─ Think of “using Notes.ini for data exchange” or “opening pages that close 

themselves, just to run some LotusScript® code in the QueryClose event”
─ The purpose of the new APIs is to make this gap a little smaller and life quite a bit 

easier

● We participated in the discussion about required features for the new
Notes and Designer extensibility APIs
─ Discussion with IBM dev about API draft at Lotusphere 2009 and conference calls
─ Design feedback / test reports within the Design Partner program  

● As always for a new API, there is still room for improvements
─ But we think this is already a huge step forward!
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Disclaimer

● We cannot cover all APIs in detail in this session!
─We'll focus on some "hot" areas instead:
─ namely the new Java UI APIs and the Designer Java-API 

● We hope to give you a good impression, what you can really do with the Notes 
8.5.1/8.5.2 APIs.
─ Hopefully you will leave this session with some ideas of your own already
─We have created up to 10 demos for you! 

● We try not to bore you to death with code today!

● Watch our blog for an upcoming series with details about how our demos work 
instead:

● http://blog.mindoo.com
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Getting started

● The following APIs and demos are based on
─ Eclipse 3.4.2
─ Lotus Expeditor® toolkit 6.2.2
─ IBM Lotus Notes 8.5.2

● Install Expeditor into Eclipse and set Lotus Notes 8.5.2 as target platform

● Create a plugin-in project to develop your code

● For the UI API, add the following dependency
─ com.ibm.notes.java.ui

● For the DDE API, add two dependencies:
─ com.ibm.designer.domino.ui.commons
─ com.ibm.designer.domino.ide.resources
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The Notes UI API – a Management Summary

● API new in 8.5.1
─ A few additional features added in 8.5.2

● Further improves the integration between Eclipse and the classic Lotus Notes 
client
─ Eclipse plugins can finally receive information about the state of forms and views of 

the classic client
─ New ways of interaction between these two worlds

● Makes existing functionality easier to use
─ Opening of design elements
─ Printing documents and views from Eclipse
─ Compose a new document and fill it with default items
─ Getting a temporary document to store and pass data
─ Execute Notes code in a background thread with proper memory management

(NotesSessionJob)
─ Reading the selected documents and column information in a view (8.5.2)
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The Notes UI API – a Management Summary

● Adds new functionality and further closes the gap between Eclipse and Lotus 
Notes
─ Read/modify contents of documents in edit mode
─ Document listener (detect edit mode on/off, modifications and document closing)
─ Get Eclipse selection for focused fields and new unsaved documents
─ Add database to workspace
─ Prompt methods of NotesUIWorkspace, e.g. to choose a database
─ Lots of Eclipse property testers (a kind of "hide when" for Eclipse elements like e.g. 

actions)
─ Execute LotusScript agents in the UI (they can display dialogs), pass data back and 

forth and attach callbacks

● What if you're only focusing on XPages?
─ UI API is great to integrate existing Notes apps with XPages apps in the Notes Client
─We'll show you how to call the UI API from XPages in the client later on!
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Where is the documentation?

● The most current version of the UI API can be found in the AppDev wiki
─ http://www-10.lotus.com/ldd/ddwiki.nsf/dx/Notes_Client_Java_UI_APIs-v8.5.2

● DDE API Javadocs available in the Notes client help
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Start small – Your first example

● Toolbar action that changes fields in an open form

● Add this to a standard Eclipse toolbar action:

NotesUIWorkspace ws = new NotesUIWorkspace();

NotesUIDocument uidoc = ws.getCurrentDocument();

if (uidoc != null) {

   NotesUIField field = uidoc.getField("Subject");

   if (field != null)

      field.setText("Hello World!");

}
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Start small – Your first example

● For backend document fields:

● Due to technical restrictions no full access to the document from Java

NotesUIWorkspace ws = new NotesUIWorkspace();

NotesUIDocument uidoc = ws.getCurrentDocument();

if (uidoc != null) {

   NotesBEDocument beDoc = uidoc.getBEDocument();

   String oldValue = beDoc.getItemString("Flag");

   // do something here

   beDoc.setItemValue("Flag", "1");

   //optional to see your changes in the UI:

   uidoc.reload();

}
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Demo

● Access and modify the UI document with Eclipse actions
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Digging deeper -
Exploring NotesUIWorkspace

● Composing new documents with preset fields

NotesUIWorkspace ws = new NotesUIWorkspace();

NotesDatabaseData dbData =

   new NotesDatabaseData("Server/Org", "main/jdoe.nsf");

NotesFormData formData =

   new NotesFormData(dbData, "Memo");

formData.addComposeItem("SendTo", "Peter Smith/Org");

ws.composeDocument(formData);
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Digging deeper -
Exploring NotesUIWorkspace

● Data classes are used in the API to store data between Notes session

● You can safely pass them between calls to the API and store them locally

● sometimes, data (like the database's filepath) is missing
─ This is due to technical restrictions
─ Use the open-method to let Notes fill in the missing fields
─ e.g. NotesDatabaseData.open(Session)

NotesDatabaseData

NotesDocumentData NotesDocumentKeyData

NotesFormData NotesFramesetData NotesPageData

NotesViewData
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Digging deeper -
Exploring NotesUIWorkspace

● Composing new documents based on other documents (1/2)

NotesUIWorkspace ws = new NotesUIWorkspace();

session.setConvertMIME(false); // Do not convert MIME to RT

Document tmpDoc = ws.getTemporaryDocument(session);

setBasicMailFields(tmpDoc);    // e.g. set subject, receipient

//Create the body as a MIME entity

MIMEEntity body = tmpDoc.createMIMEEntity("Body");

Stream stream = session.createStream();

stream.writeText("<ul><li>hello</li><li>world</li></ul>");

body.setContentFromText(stream, "text/html;charset=UTF-8", 
MIMEEntity.ENC_IDENTITY_7BIT);

//Save the document

tmpDoc.save(true, true);



17

Digging deeper -
Exploring NotesUIWorkspace

● Composing new documents based on other documents (2/2)

//now compose a new document in the mail database

//based on the temporary document

Database mailDb = openMailDatabase();

NotesDatabaseData mailDbData = new NotesDatabaseData(mailDb);

ws.composeDocument(mailDbData, tmpDoc);

//don't forget to restore conversion

session.setConvertMime(true);
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Digging deeper -
Exploring NotesUIView

● New in 8.5.2: Uniform way to access the selection of a view

● Works in Java views and classic views

NotesUIWorkspace ws = new NotesUIWorkspace();

NotesUIElement uiElement = ws.getCurrentElement();

if (uiElement instanceof NotesUIView) {

  NotesUIView uiview = (NotesUIView) uiElement;

  NotesUIViewEntryCollection entryCol = uiview.getActionableEntries();

  //things we can get without opening the entry collection

  NotesUIViewEntry firstEntry = entryCol.getFirstEntry();

  int nrOfEntries = entryCol.size();

 

  //to access more than the first entry, we need to open the collection

}
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Digging deeper -
Exploring NotesUIView

● New in 8.5.2: Uniform way to access the selection of a view

//to access all entries, we need to open the collection

entryCol.open( new CollectionOpenListener() {

 public void collectionOpened( CollectionOpenedEvent evt ) {

  

  If ( evt.getError() == null ) {

   NotesUIViewEntryCollection loadedCol = evt.getCollection();

   Iterator<NotesUIViewEntry> iterator = loadedCol.iterator();

   //iterate over entries here:

   //NotesUIDocumentEntry, NotesUITotalEntry, NotesUICategoryEntry

  }

 }

}, false);
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Demo

● Flexible report generator
─ Process view selection
─ Produce report by execution formula or JavaScript on selection
─ compose document with result in richtext field
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Digging deeper -
Calling agents in the UI

● Until now, you could only execute LotusScript agents in the backend

● No way to change the Notes UI from an agent
─ This has changed in 8.5.1
─ New function to execute an agent in the Notes UI
─ E.g. to access the current document/view and display dialogs
─ Even run agents from a different database!

● Handy for functions that are not yet part of the UI API
─ Put your code in a Lotusscript agent 
─ Call NotesUIWorkspace.runAgent
─ Use a callback listener to get notified when the agent is done
─ Pass data between Eclipse and LotusScript
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Improved Eclipse selection

● In 8.5: Eclipse selection limited to selected documents in a view and already 
saved documents
─ Based mainly on passing around Notes-URLs
─ No access to "in-memory" documents

● In 8.5.1: get information about unsaved documents and even about focused 
fields
─ You can track what the user is editing
─ Introduction of classes that can be queried directly for more information than just the 

URL (e.g. NotesUIElement, NotesUIDocument and NotesUIField)
─ Uses standard Eclipse concept (adapters) to provide additional data!

● In 8.5.2: extended list of “Property Testers” and more adapter support
─ Property Testers are used like “Hide When's” in top-level and context menu entry 

definitions
─ For e.g. a list of these property testers, see OpenNTF “Java UI API Exerciser”
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Improved Eclipse selection

● Using IAdaptable on selections

// iterate over a selection and print the form-name

for(Iterator<?> 
i=((IStructuredSelection)selection).iterator(); 
i.hasNext(); ) {

Object item = i.next();

if (item instanceof IAdaptable) {

NotesUIDocument uidoc = (NotesUIDocument)
((IAdaptable)item).getAdapter(NotesUIDocument.class);

if (uidoc != null)

System.out.println( uidoc.getForm() );

}

}
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Demo

● Universal context-based online help system
─ Sidebar help for current Notes content or XPage
─ Call agents from Eclipse and transfer data
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Domino Designer Extensibility API

● The DDE API allows for programmatic Java extensions of the Domino Designer 
IDE

●  Adds new functionality
─ Get design element information about the current Eclipse selection
─ Set basic design element and database data
─ Refresh the project/single design element after a backend change (e.g. DXL import)
─ Open databases in the DDE navigator

● Main use cases:
─ React on the user selection -

e.g. display additional data in your own display areas (Eclipse views)
─ Offer automated processing of data, e.g. set flags for all selected images

or let code generators create the design

●  Additional extensibility gained by leveraging the standard Eclipse APIs
─ An NSF project is an extended Eclipse IProject

● API is unchanged in 8.5.2



27

Convert Eclipse selection into
DDE API objects

● Convert Eclipse IProject into DesignerProject
─ An IProject is a generic development project in the Eclipse IDE 

DesignerProject nsfProject =

   DesignerResource.getDesignerProject(iproject);

String dbServer = nsfProject.getServerName();

String dbPath = nsfProject.getDatabaseName();

//

//modify db design here, then notify DDE about changes

//

nsfProject.refresh();
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Convert Eclipse selection into
DDE API objects

● Convert Eclipse IResource into DesignerDesignElement
─ An IResource is a generic subelement of an Eclipse IProject

DesignerDesignElement de =

   DesignerResource.getDesignElement(iresource);

String oldName = de.getName();

//

//modify design element here, then notify DDE about changes

//

de.refresh();
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Demo

● Custom properties for Notes design elements

● Automatic design element modification
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Limitations of the API

● Sounds great! But where is the catch?
─We do not only want to show what's possible, but also what's not possible

● Only a small subset of the LotusScript API available

● Event listeners not blocking form/view events
─ No replacement for LotusScript events, e.g. QuerySave  

● Eclipse => classic Notes only
─ Does only empower the Eclipse world, no improvements for the classic client world

● Any benefits for XPages developers?

So how can we bring classic client, XPages apps and Eclipse closer 
together?

→ How can we leverage the Eclipse functions from LotusScript?

→ Is the UI API relevant for XPages developers?
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How to connect two worlds

● At LS10* we discussed various approaches to integrate classic Notes with 
Eclipse and came up with a solution:

● Two JVMs: Eclipse JVM and classic Notes JVM
─ No direct connection between Eclipse plugins and Notes agents

● Use local network communication between them
─ Open a server port in Eclipse, connect from the classic JVM

● Use your own protocol or industry standards like Java RMI
─ And remotely call Eclipse plugin code from classic Notes

● Optional: Use LS2J to use the remote Java API in LotusScript

* Presentation available on our blog
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How to connect two worlds

● The result was pretty impressive:
─ Combination of LotusScript and Eclipse plugins opens up new design patterns
─ E.g. background threads for long-running LotusScript code or creating Eclipse tabs 

and layouts from LotusScript on the fly

Notes 
JVM

Client

Eclipse
JVM -
Plugin
Server

Lotus-
Script

LS2JTCP/IP

Eclipse/Expeditor

Classic Notes
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Demo

● LotusScript registering context menu actions

● Multithreaded LotusScript application
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How to connect two worlds

● Let's do the same with XPages in the Client!
─ Leverage Expeditor APIs when running locally
─ XPages applications no longer just local web apps
─ Use UI API to control classic Notes Client applications from XPages code
─ Easy integration thanks to the XPages Extensibility API of Lotus Notes 8.5.2

● Here's an overview:

Extensibility 
API extension

Eclipse plugin 
with API 

implementation

SSJS / 
Java

Eclipse/Expeditor

XPages Application
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How to connect two worlds

● Some implementation details:
─ Leverages new OSGi support for XPages in 8.5.2
─ Extend XPages apps with java controls and code stored in Eclipse plugins
─ XPages editor adds a plugin dependency to the NSF the first time such a java 

control is added to an XPage
─ Eclipse plugins can run out of the scope of the XPages security manager (no 

SecurityExceptions!) and call Eclipse APIs

Extensibility 
API extension

Eclipse plugin 
with API 

implementation

SSJS / 
Java

Eclipse/Expeditor

XPages Application
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Demo

● Create a new mail from an XPages application

● Visualize long-running SSJS tasks as Eclipse Jobs

● Execute dynamic LotusScript with Notes UI access

● Create perspectives and viewparts from SSJS
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General advice

● Learn to work with threads
─ Don't do long running operations in the UI thread!
─ This blocks the whole client!
─ Do calculations in background jobs, then use a UIJob to update the UI: 

NotesSessionJob job = new NotesSessionJob("BG Operation") {

  protected IStatus runInNotesThread(

      Session session, IProgressMonitor monitor)

        throws NotesException {

      //compute something here

      return Status.OK_STATUS;

  }

};

job.schedule();
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General advice

● Don't cache Notes objects
─ Can lead to severe memory issues

● The Notes Java API only has a limited amount of handles for data objects
─ And you are not alone in the client
─ Call .recycle() whenever possible 

●  Use NotesSessionJob for your Notes access
─ Executes in the background
─ Grabs a fresh session every time, safe even if the Notes ID has changed
─ Automatically recycles all the Notes objects created within the session
─ Copy the Notes data into your own objects
─ UI API data classes are safe (e.g. NotesDocumentData) 
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General advice

● When building your own bridge between XPages and Eclipse, you may get 
SecurityExceptions calling restricted API operations
─ XPages runtime is protected by a SecurityManager, direct execution of restricted 

code not allowed

● Workaround: Wrap your restricted plugin code in AccessController calls
─ Disables SecurityManager check for a block of code

T result=

 AccessController.doPrivileged(new PrivilegedAction<T>() {

  public T run() {

    // this code runs out of security manager scope

    // be careful not to open security holes!

   T newT=buildT();

   return newT;

  }

 });
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Summary

● Eclipse developers get additional ways to interact with Lotus Notes UI
─ Existing Lotusscript code can be reused by calling it in UI agents
─ Can be used for a smooth transition of Notes code to XPages apps and Java plugins 

● Classic Lotus Notes development can also benefit from the new APIs
─ By building a bridge between LotusScript and Eclipse plugins, the API functions can 

also be used from classic forms and views
─ Interesting new design patterns like multithreaded LotusScript applications and 

Eclipse UI control 

● With 8.5.2, XPages developers can leverage Eclipse plugin code in their 
applications
─ UI and Eclipse APIs can be used to improve the local user experience and integrate 

classic design elements

● DDE can now be extended as well
─ Leverage the design element selection to modify design, add code/design 

generators to DDE
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Thank you!

Time for Q&A
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