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Agenda

● Setting the context, revise familiar old LotusScript

● Moving to the less familiar, are there similarities with XPages?

● Brief History – DNA of EL and XPages

● A closer look at Value Properties and EL

● EL Syntax

● Managed Beans
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Agenda 

● How do we use managed beans in XPages?

● Which interface do you serve?

● Demo

● Wrap-up

● Q & A

● Complimentary Sessions
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Setting the context - Familiar

● Flashback to a pre-XPage world

● Configurable, highly dynamic pages were difficult
─ Feed the data as JSON/XML to the browser and use JavaScript to write the page.
─ Run a LotusScript agent to print HTML

● LotusScript Evaluate
─ Gave you the ability to take a STRING and evaluate code
─ Could be user driven data

● Use Cases
─ Content Management
─Web based workflow
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Show some LotusScript code
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Setting the context - Unfamiliar

● We're assuming you know
─ XPages is a UI with underlying XML
─ XML → Java → Java Byte Code
─ You place UI Components and bind them to a data source

● XPages are really just a Java agent.
─ Emits HTML markup by printing to a stream
─ Executes code in events
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Show XPage Java code
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Setting the context – Unfamiliar continued

● We're assuming you know
─ XPages is a UI with underlying XML
─ XML → Java → Java Byte Code
─ You place UI Components and bind them to a data source

● XPages are really just a Java agent.
─ Emits HTML markup by printing to a stream
─ Executes code in events

● Evaluate == EL
─@Formula
─ Addition of Server Side JavaScript
─ Includes base EL Syntax*
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Introduction to Value Property and EL

● You should be familiar with the source tab of an XPage
─ Key to understanding XPage's JSF & JSP roots
─ It's all just XML → Strings

● You should be familiar with these already
─ Simple Data Bindings
─ Javascript 

● You'd think we'd only be interested in EL in the Advanced Tab
─ Expression Language (EL)  ← Is this the Jackpot?
─ Scoped Variable
─ Component Parameter
─ Custom
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Introduction to Value Binding and EL

● Lets look at the XML Source for:
─ A Simple data binding
─ A Scoped Variable
─ Expression Language (EL)

● Why is it all the same?
─ Could it be because it's all EL under the hood?
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Lets take a look
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So it is really just 
a STRING!
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Brief History – DNA of EL and XPages
(explaining what and why)

● As the 20th Century drew to a close we had
─ Java Server Pages (JSP)
─ Standard Tag Library (STL or JSTL)
─ STL had Simplest Possible Expression Language (SPEL)

●  By 2004 – 2005 
─ JSP 2.0 with enhanced SPEL in JSR Review
─ Java Server Faces (JSF) was introduced and needed to extend SPEL
─ JSP and JSF aligned on a Unified Expression Language

●  XPages is JSF under the hood
─ JSF 1.2 with some JSF 2.0 features
─ Plus all that Domino stuff
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Lets look at the JSF EL Syntax

● #{expr} or ${expr}
─ # indicates dynamic
─ $ static after construction (on page load).  i.e. more efficient
─ expr is a combination of literals, identifiers and operators

●  Literals (derived from Java)
─ Boolean: true, false 
─ Integer: As in Java
─ Floating point: As in Java
─ String: 'xyz' or “xyz”, 

– includes escaped characters \' \” \\
─ null

●  Operators
─ Arithmetic: +, -, *, /, div, mod
─ Logical: and, &&, or, ||, not, !
─ Relational: ==, eq, !=, ne, <, lt, >, gt, <=, le, >=, ge
─ Conditional: A ? B : C
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Lets look at some more of the JSF EL Syntax

● Not to be forgotten
─ Null check: empty (use as a unary operator to get a boolean return)
─ Type check: instanceof

●  Identifiers
─ Implicit Objects available in JSF Framework

– FacesContext
– Param
– Cookie
– etc.
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Lets take a look 
(and see if that works in XPages)
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●  Identifiers
─ Implicit Objects in JSF Framework (IBM)
─ Managed Beans we inject via faces-config.xml

● Properties of Identifiers
─ You can access properties of the bean using “.” and “[ ]” notation
─ myBean.name → myBean.getName();
─ myBean[“Phil”] → myBean.get(“Phil”);
─ myBean.addresses[“home”].street → myBean.getAddresses().get(“home”).getStreet();

● So what are these beans?

Lets look at some more of the JSF EL Syntax
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Managed Beans

● What is a Bean
─ It's a Plain Old Java Object (POJO)
─ It's created and managed by the JSF Servlet
─ Can contain whatever you want
─ ANYTHING YOU CAN CODE!

●  JSF uses Faces-Config.xml to control Managed Beans
─ It's an XML document that defines what Managed Beans are available
─ Controls the lifespan of the bean (application, session, request, view)

<?xml version="1.0" encoding="UTF-8"?>
<faces-config>
  <managed-bean>
    <managed-bean-name>JumpingBean</managed-bean-name>
    <managed-bean-class>com.sample.bean.JumpingBean</managed-bean-class>
    <managed-bean-scope>application</managed-bean-scope>
  </managed-bean>
</faces-config>
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How do we do this in XPages?

● If you juggle you Eclipse Views, you get access to faces-config.xml
─ Add the Java Package Explorer view to your DDE Perspective
─ Look for WebContent/WEB-INF folder

● You have to add your Java files to a source folder inside the NSF
─ Add that source folder to the build path
─ Make sure you compile/build

●  You should now have managed beans available in your XPages EL
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Lets take a look 
(at that working in XPages)
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What interface do you serve?

● Java interfaces are an extremely powerful feature
─ No implementation, but defines a contract.
─ If your bean implements an interface:

– It can be used by any code that understands that interface
– The calling code only cares about the contract
– Can implement multiple interfaces

● Why is this important?
─ The EL resolver is just a bit of Java code
─ It looks for beans that either conform to Java Get/Set Value Semantics

– That's standard Java syntax and is found using reflection
─ OR, conforms to a supported interface

● So what interfaces are supported?
─ Java Map
─ XPages DataObject Interface

– That's com.ibm.xsp.model.DataObject
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What interface do you serve?

●  So really, why is this important?
─ Dynamic Data API
─ Extensible & flexible
─ You really don't want to pre-populated a Map of all customers to do this

– CustomerDB[“Phil”]
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What interface do you serve?
package com.acme.demo.persondata;
import com.ibm.xsp.model.DataObject;

public class PersonData implements DataObject {

public Class<?> getType(Object id) {
// Return the type of class that id resolves to. Complex case could return Employee or Customer 
return Person.class;

}

public Object getValue(Object id) {
// Retrieve a record from some store, based on id
return null;

}

public boolean isReadOnly(Object id) {
// You are free to implement your own, or rely on your underlying data store
return false;

}

public void setValue(Object id, Object value) {
// Store value in your data store using id

}
}
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Use Cases in the Demo

● Purchase Request
─We will take a really classic Notes Application pattern

– Table entry of line items
– No embedded view element
– Fields like Descrip_1 ... Descrip_n & Qty_1 … Qty_n

─ And show you how to implement an XPage version
– No conversion of data necessary
– Just add an XPage

● Resolution of client-side ID inside Repeat controls
─ Complex XPages produce identifiers like this:

– view_1:somePanel_3:ID_4
– Very Bad for client-side JavaScript

─ Fortunately EL is just string replacement, so we'll show you how.
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Use Cases in the Demo

● Moving your application logic into back-end Java classes
─ Share code between multiple applications (NSF's)

– Version control, Unit Tests
– All the Java goodness

─ Separate UI development from back-end code development
– Best Practice for large projects, skill-sets differ
– Model View Controller pattern.
– Logging can be integrated transparently

─ Opens door to other data stores and data providers

● Using Xpath in EL
─ Xpath is part of Domino today
─We'll go over what you have to do to use it

● Can we extend EL beyond JavaScript?
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Demo
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Wrap-up

● EL is just String transformation.
─ Multi-layered like an onion

– ${expr} at page load (construction)
– #{expr} on page refresh (dynamic)

● Managed Beans open the door
─ Limited by your imagination

● Gone are the days of “Notes can't do that”!
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Question and Answer Time
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Complementary Sessions

● AD102 Hacking IBM Lotus Designer (Gently)
─ By Tim Tripcony and Maureen Leland
─ Take-away:

– Minimum: A FacesConfig editor plugin.
– Maximum: Techniques you can use to empower your XPage development.

●  AD114 There and Back Again: 
Strategies for Re-factoring Notes Applications to XPages
─ By Nathan T. Freeman and Philippe Riande
─ Take-away: Turning classic into modern.

– Armed with your improved EL knowledge and these strategies, 
you will be better able to answer the migration question.
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